Your browser doesn't support the features required by impress.js, so you are presented with a simplified version of this presentation.
For the best experience please use the latest Chrome, Safari or Firefox browser.
Lukas Graf, Tobias Harks
Augsburg University
The instantaneous distance from node $v$ to sink $t$ is $\ell_v(\theta) \coloneqq \begin{cases}0, & \text{if } v=t \\ \min_{e=vw}\{\ell_w(\theta) + c_e(\theta)\}, &\text{else}\end{cases}$
$f^+_e(\theta) > 0 \implies \ell_v(\theta) = \ell_w(\theta) + c_e(\theta)$ for all edges $e = vw \in E$ and times $\theta \in \IR_{\geq 0}$.
(i.e. flow may only enter active edges)
(3) .. Extend $f$
(3) .. Assume all $f_e^{^-}$ constant on $[\theta,\theta+\alpha_0)$
(3) .. Sort nodes s.th. $\ell_{v_1}(\theta) \leq \ell_{v_2}(\theta) \leq \dots$
(4) .. For $i = 1, \dots, n$ Do
(5) .... Find constant IDE extension of $f$ at $v_i$
(5) .... for some $[\theta,\theta+\alpha_i]$ with $\alpha_i \gt 0$
(6) .. Extend $f$ up to $\theta \coloneqq \theta+\min\Set{\alpha_i}$
(in at most $\bigO\left(P(2(\Delta+1)^{4^\Delta+1})^{T\abs{V}}\right)$ sub-phases)
The subgraph of active edges is always acyclic.
$\implies$ Algorithm may use a topological order w.r.t. $\tilde{E}$
(in at most $\bigO\left(P(2(\Delta+1)^{4^\Delta+1})^{T\abs{V}\cdot \abs{E}/C}\right)$ phases)